199483869-metodo-cross-farq-141027232505-conversion-gate02.pdf

Please download to get full document.

View again

of 36
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Categories
Published
Folio EST 02-03 METODO DE CROSS Materia: Estructura II Folio: EST 2-03 Fecha: Noviembre/2000 Autores: Arqto. Isabel M. Zúñiga Lamarque Arqto. Jing Chang Lou 2 Folio EST 02-03 METODO DE CROSS INTRODUCCION El poder entender y
    Folio EST 02-03 Materia: Folio: Fecha: Autores: METODO DE CROSS Estructura II EST 2-03 Noviembre/2000 Arqto. Isabel M. Zúñiga Lamarque Arqto. Jing Chang Lou    2    MATERIAL EXCLUSIVO DE USO DOCENTE 3 METODO DE CROSS Folio EST 02-03 INTRODUCCION El poder entender y manejar el conocimiento de los modelos estructurales requiere contar con herramientas que nos permitan evaluar las tensiones que se generan en los elementos componentes del sistema. Estas herramientas de evaluación se basan en modelos físicos, que se establecen sobre esos elementos y que buscan representar los fenómenos tensionales (comportamiento tensional, deformaciones) mediante procedimientos y ecuaciones matemáticas. La importancia de contar con estas herramientas, para nosotros como arquitectos o estudiantes de arquitectura, radica en 1. Los métodos y ecuaciones matemáticas con que se mide un fenómeno, contienen en su formulación. las variables que intervienen en éste la medida o proporción en que participan o influyen en el fenómeno. Por lo tanto, es la herramienta que nos otorga una comprensión de cómo funciona ese fenómeno y nos dice cómo intervenir y modificarlo en función de los requerimientos. He aquí algunos ejemplos que ilustran este punto. Un viga simplemente apoyada, con carga uniformemente repartida “q” y luz “l” Si observamos los valores dados de Momento Máximo y de Flecha Máxima, vemos que la luz influye en el cuadrado de su valor en las tensiones de la viga, y a la cuarta en la deformación de ésta. Es fácil concluir que a medida que la luz crece, la deformación de la viga aumenta en mayor proporción que sus tensiones. Por otra parte, también es posible afirmar, que en la medida que la carga aumenta, el problema de tensiones y el de deformaciones en la viga, se incrementa en la misma proporción. Si esa misma viga se empotra en sus apoyos (por ejemplo conectándola en cada uno de estos con un par de pernos adecuadamente dimensionados) la fórmula que representa el valor de la flecha máxima, nos muestra que la deformación disminuirá a la quinta parte, con respecto a la deformación srcinal. (fig. 2)    4 Este tipo de conclusiones, que lo podemos obtener en todos los niveles de análisis estructural, desde el diseño de un conector, al análisis y dimensionamiento de un elemento del sistema o al análisis del modelo estructural como un todo, nos ira proporcionando los criterios que como arquitectos necesitamos para enfrentar nuestros proyectos. 2. Por otra parte, el contar con estas herramientas - que en muchos casos son simplificaciones del fenómeno o aproximaciones a la realidad - nos permite hacer una evaluación con miras a un predimensionamiento o a establecer la factibilidad de nuestras proposiciones. En el estudio de las estructuras hiperestáticas, debemos recurrir al estudio de las deformaciones de los elementos para poder llegar a conocer las tensiones que los solicitan. A partir de dichas deformaciones, se llegan a establecer sistemas de análisis como es el caso de los Teoremas de Clapeyron, o de los Tres y Cuatro Momentos. Este método nos permite determinar el valor de los momentos en los nudos o apoyos de elementos hiperestáticos, como lo son las vigas empotradas, las vigas continuas, las losas y los marcos rígidos. Para esto, es necesario establecer en cada nudo, una ecuación por cada momento desconocido. El asunto es que al aplicar Clapeyron al modelo, se establecen relaciones entre dichos momentos, lo que genera ecuaciones con tres o cuatro incógnitas, según sea la conformación de los nudos. Finalmente, los resultado se obtienen resolviendo sistemas de ecuaciones, lo que resulta muy tedioso cuando las incógnitas son varias. En el ejemplo de la figura 3, sólo hay una incógnita y el aplicar Clapeyron resulta eficiente ya que sólo deberemos resolver una ecuación. En la viga empotrada de la figura 4, también las incógnitas se reducen a una, por la simetría del modelo. La viga de dos tramos de la figura 5 se resolverá con un sistema de dos ecuaciones, si es simétrica, y de tres si no lo es. En cambio. el marco de dos pisos y 3 naves. de la figura 6. a pesar de la simetría que reduce las incógnitas a la
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x